

SETO CSP Program Summit 2019

LOW-COST HIGH TEMPERATURE CERAMIC HEAT EXCHANGERS

March 19, 2019 Oakland, CA

Dileep Singh, Sr. Scientist and Group Leader
Thermal and Structural Materials

Background

HXs for Thermal Energy Transfer from HTF to s-CO₂

T > 700°C

P ~ 20 MPa for s-CO₂

Higher Temperatures (>700°C) and Pressures Require Components (HXs, TES, etc.) that Perform Reliably at the Operating Conditions

CSP – High Temperature Heat Exchangers

From: Gen3 RoadMap 2017

Higher Operating Temperatures with Challenging HTFs

- Corrosion from salt based HTF
- Oxidation
- Creep

Proposed concept – Why ceramics?

- High melting point, high temperature thermodynamic stability
- Compatible to variety of HTFs and working fluid
- High corrosion resistance (salts, s-CO₂)
- High oxidation and fouling resistances
- Good thermal conductivity at elevated temperatures
- High creep resistance at operating temperatures
- Inexpensive raw materials

Traditional ceramic processing and machining processes are difficult and expensive

Proposed concept – Additive manufacturing

Ease of Fabrication and Manufacturing

 Complex geometries (shapes with curvatures and sharp transitions can be fabricated)

Tailorable Composition and Properties

 composites can be fabricated by manipulating the preform compositions

Lower cost

- Reduced processing steps
- Shorter production times
- Design changes can be easily incorporated in manufacturing

Key Tasks

- HX design using combined CFD & thermal/stress modeling
- Fabrication and characterization of HX plates
- Fabrication of multilayered HX of optimized design
- Joining and durability evaluations
- Experimental testing and validate simulations
- Techno-economic analysis

Maximum principal stress profiles

Challenges and mitigation plans

Adequate pressure drops and stresses, while maintaining necessary thermal transport

- CFD and conjugate thermal/stress analysis will dictate optimum HX design

Densification

- Temperature, heating/cooling rates

Mechanical properties (toughness) and thermal shock resistance of ceramics

improve toughness and reliability and benefit thermal conductivity

Integration of various HX components, ceramic/metal joining

- match the thermal expansions between ceramic and metal

Key Outcomes and Impact

- An advanced low-cost, corrosion and creep resistant thermal exchange system operating at temperatures >700°C and compatible to salt and gas phase HTFs and s-CO₂
- Higher temperature power cycles will help SETO program to achieve its LCOE targets
- Demonstrated performance (and associated data) for a reliable ceramic
 HX at lab-scale
- Innovations in materials and manufacturing will will benefit not only CSP, but other power generation and process industries

